Intestinal acyl-CoA:diacylglycerol acyltransferase 2 overexpression enhances postprandial triglyceridemic response and exacerbates high fat diet-induced hepatic triacylglycerol storage.
نویسندگان
چکیده
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2(Int) mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.
منابع مشابه
Effects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin.
Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the terminal step in triacylglycerol synthesis, have enhanced insulin sensitivity and are protected from obesity, a result of increased energy expenditure. In these mice, factors derived from white adipose tissue (WAT) contribute to the systemic changes in metabolism. One such factor, adiponectin, increases...
متن کاملSpecific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids.
UNLABELLED Nonalcoholic fatty liver disease, characterized by the accumulation of triacylglycerols (TGs) and other lipids in the liver, often accompanies obesity and is a risk factor for nonalcoholic steatohepatitis and fibrosis. To treat or prevent fatty liver, a thorough understanding of hepatic fatty acid and TG metabolism is crucial. To investigate the role of acyl CoA:diacylglycerol acyltr...
متن کاملHyperlipidemic guinea pig model: mechanisms of triglyceride metabolism disorder and comparison to rat.
Guinea pigs and rats are both common animal models for hyperlipidemia studies. However, many recent studies have suggested that rats do not develop hypertriglyceridemia in response to cholesterol feeding. In the present work, the differences in triglyceride metabolism between guinea pigs and rats were investigated. Feeding a high-fat diet containing 0.1% cholesterol and 10% lard for 4 weeks led...
متن کاملResistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice.
To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient (HSL-/-) and wild-type mice were fed normal chow or high-fat diets. HSL-/- mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of H...
متن کاملTargeting viperin improves diet-induced glucose intolerance but not adipose tissue inflammation
Viperin is an interferon-inducible antiviral protein, responsible for antiviral response to a variety of viral infections. Here, we show that silencing viperin by antisense oligonucleotides (ASO) protects against diet-induced glucose intolerance, and yet exacerbates adipose tissue inflammation. In high-fat diet-fed mice, viperin ASO improves glucose homeostasis, reduces plasma triglyceride conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1831 8 شماره
صفحات -
تاریخ انتشار 2013